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Abstract

Research synthesis methods such as meta-analysis rely primarily on
appropriate summary statistics (i.e., means and variance) of a response
of interest for implementation to draw general conclusions from a body of
research. A commonly encountered problem arises when a measure of
variability of a response across a study is not explicitly provided in the
summary statistics of primary studies. Typically, these otherwise credible
studies are omitted in research synthesis, leading to potential small-study
effects and loss of statistical power. We present MSE FINDR, a user-
friendly Shiny R application for estimating the mean square error
(i.e., within-study residual variance, bs2) for continuous outcomes from
analysis of variance (ANOVA)-type studies, with specific experimental
designs and treatment structures (Latin square, completely randomized,
randomized complete block, two-way factorial, and split-plot designs).
MSE FINDR accomplishes this by using commonly reported in-
formation on treatment means, significance level (a), number of repli-
cates, and post hoc mean separation tests (Fisher’s least significant
difference [LSD], Tukey’s honest significant difference [HSD],
Bonferroni, Šidák, and Scheffé). Users upload a CSV file containing
the relevant information reported in the study and specify the ex-
perimental design and post hoc test that was applied in the analysis of
the underlying data. MSE FINDR then proceeds to recover bs2 based

on user-provided study information. The recovered within-study
variance can be downloaded and exported as a CSV file. Simulations of
trials with a variable number of treatments and treatment effects showed
that the MSE FINDR-recovered bs2 was an accurate predictor of the actual
ANOVA bs2 for one-way experimental designs when summary statistics
(i.e., means, variance, and post hoc results) were available for the single
factor. Similarly, bs2 recovered by the application accurately predicted the
actual bs2 for two-way experimental designs when summary statistics were
available for both factors and the sub-plot factor in split-plot designs,
irrespective of the post hoc mean separation test. The MSE FINDR
Shiny application, documentation, and an accompanying tutorial are
hosted at https://garnica.shinyapps.io/MSE_FindR/ and https://github.
com/vcgarnica/MSE_FindR/. With this tool, researchers can now
easily estimate the within-study variance absent in published reports
that nonetheless provide appropriate summary statistics, thus enabling
the inclusion of such studies that would have otherwise been excluded
in meta-analyses involving estimates of effect sizes based on a con-
tinuous response.

Keywords: meta-analysis, missing summary statistics, R Shiny, residual
variance recovery, unreported variability

Scientific progress depends on our ability to reach broad gener-
alizations from knowledge generated across a related body of re-
search using results that may reside in many disparate sources
(Hunter and Schmidt 2004; Madden and Paul 2011; Scheiner and
Gurevitch 2001). Meta-analysis, a statistical synthesis methodol-
ogy, has been fundamental in combining the results of separate,

independent studies to reach an overall understanding of a research
problem (Borenstein et al. 2021; Gurevitch et al. 2018; Lipsey and
Wilson 2001). When studies of interest have met the criteria for in-
clusion in a meta-analysis following a systematic review, they are
statistically combined to estimate the magnitude and direction of the
overall effect size (Borenstein et al. 2021). In the present study, we
focus on meta-analyses that utilize means and variances to estimate
effect sizes based on a continuous response in an analysis of variance
(ANOVA) setting.
Meta-analysis relies on the availability of either the actual

individual-study raw data or study-level summary metrics such as the
sample size, treatment mean, and variability of the data, i.e., variance
or standard deviation (SD). Variance metrics are required because
effect sizes in moment- and likelihood-based meta-analytic methods
are commonly weighted by the inverse of their variances, whereby
studies with low residual variances are given more weight than those
with larger residual variances (Borenstein et al. 2021). However, plant
disease (Madden and Paul 2011) and ecological (Gurevitch and
Hedges 1999; Scheiner and Gurevitch 2001) research data are not
always adequately reported in the literature, with many studies
reporting mean effects but not any associated variability metrics. For
example, Ngugi et al. (2011) observed that >97% of the reports on
product efficacy published in Fungicide & Nematicide Tests,
Biological & Cultural Tests and Plant Disease Management Reports
did not directly provide the pooled sample variance or a related
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statistic. Additionally, the underlying raw data that could be used to
generate summary statistics for these reported studies are rarely
available (Sparks et al. 2023). Variability metrics can be calculated
algebraically from other parametric summary statistics such as t tests,
F-value or P value, contained in the primary report (Batson and Burton
2016; Thiessen Philbrook et al. 2007). These calculations, however,
assume the original data follow normality assumptions (Lipsey and
Wilson 2001). Equations used in these calculations are also limited by
the numerical precision of the reported summary statistics and be-
come increasingly unreliable when too few digits are reported due
to rounding (Acutis et al. 2022; Lajeunesse 2013). Consequently,
studies in which the underlying raw data are not available or that
lack basic summary statistics are usually omitted in projects on
quantitative synthesis of research results. This can lead to impre-
cision and biases in meta-analysis results (Borenstein et al. 2009;
Weir et al. 2018). As a result, there has been increasing interest in
developing methods that will allow the inclusion of studies lacking
the required summary statistics into the meta-analysis (Acutis et al.
2022; Adams et al. 1997; Chowdhry et al. 2016; Ngugi et al. 2011).
The methods developed in these latter studies are increasingly be-
ing used by applied researchers in their research synthesis studies
(Fohrafellner et al. 2023; Kong et al. 2023; Tadiello et al. 2023).
One method suggested to synthesize results from studies with no

variability metrics is to conduct an unweighted meta-analysis using
the log response ratio as the effect size (Adams et al. 1997). This
approach requires only the mean but not the SD to compute boot-
strapped confidence intervals (Gurevitch and Hedges 1999; Scheiner
and Gurevitch 2001). However, the approach can be viewed as a very
crude surrogate for a traditional meta-analysis and should be used
when no other technique is available for research synthesis (Lajeunesse
2013). Imputation methods have also been proposed for estimating
missing sample variances (Chowdhry et al. 2016; Furukawa et al.
2006). However, they assume that the individual-study information is
missing at random and not because of reporting biases. In addition,
the assumption that studies are missing at random is untestable
(Higgins et al. 2008; Lajeunesse 2013). Imputation techniques are
also appropriate only when a minority of studies to be included in a
meta-analysis are missing variability metrics. To address the limi-
tations of multiple imputation methods, Nakagawa et al. (2023) re-
cently proposed using a weighted average coefficient of variation
(CV) estimated from studies in the dataset that do report SDs. Their
approach is limited to using the log response ratio as the effect size
and can result in biased estimates of the effect size when CVs are
different between studies and within-study sample size is relatively
small (Nakagawa et al. 2023).
In an ANOVA setting, the within-study residual variance, bs2, is

equivalent to the mean square error (MSE) and is an estimate of the
true variance (s2), given the assumption of homogenous (pooled)
variances among treatment groups. In ANOVA, post hoc test pro-
cedures (mean separation or multiple comparisons) are commonly
conducted and are based on a test statistic indicating whether a given
pairwise treatment mean difference is statistically different from zero
(Montgomery 2001). Post hoc test procedures are based partly on bs2,
and formulas have been presented to recover MSE from these pro-
cedures (Acutis et al. 2022; Lipsey and Wilson 2001; Ma et al. 2008;
Ngugi et al. 2011). Ngugi et al. (2011) proposed a method for re-
covering bs2 based on the premise that the actual least significant
difference (LSD) between two means lies somewhere between the
largest non-significant difference (lower limit) and the smallest sig-
nificant pairwise difference (upper limit) given by a post hoc test.
These bounds are assumed to contain the Fisher LSD bounds because
Fisher’s LSD test is the most liberal among the post hoc tests. The
estimated LSD (ELSD) is then obtained by averaging the upper and
lower LSD limits. Fisher’s LSD formula is then applied to recover bs2

using ELSD as the plug-in estimate of the LSD. This procedure
works only for studies with at least one significant mean separation.
The accuracy of ELSD decreases when either the number of treat-
ments or the number of non-significant or significant treatment dif-
ferences decreases. In estimating bs2 using ELSD, Ngugi et al. (2011)

also use a conservative 97.5th percentile point of the standard normal
distribution instead of percentile point of t-distribution with its
associated degrees of freedom, which may result in less accurate
values of bs2. Acutis et al. (2022) recently developed the EX-
TRACT tool that is coded in the Microsoft Excel environment to
recover the pooled SD from multiple comparison tests following
ANOVA. EX-TRACT allows users to enter summary statistic
metrics for a variety of post hoc methods and experimental designs
to recover bs2.
Building on the above concepts and ideas, we present MSE

FINDR, a Shiny R application for recovering bs2 from ANOVA-
type studies, where the MSE is missing in studies that otherwise
provide treatment means, significance level, number of replicates,
and results of post hoc tests. Specifically, MSE FINDR extends on
the concepts used by Ngugi et al. (2011) for LSD by applying the
correct post hoc test distribution and associated degrees of freedom
to recover bs2. The MSE FINDR application handles some addi-
tional experimental designs and post hoc tests not covered in EX-
TRACT. The web-based design feature of the Shiny application
that may be easier to use than an R package, should appeal to a
broad range of user audiences interested in estimating bs2 from
published studies reporting a continuous response in an ANOVA
setting.

Materials and Methods

Software development and workflow
The source code for MSE FINDR, simulations, and datasets used

in this study are available at https://github.com/vcgarnica/MSE_FindR.
MSE FINDR (version 1.0.1) is written in the R programming
language version 4.2.2 (R Core Team 2022). The application
supports a variety of one- and two-way experimental designs
(Table 1), which are common in the agricultural, ecological, natural
resources, engineering, physical, and chemical sciences (Montgomery
2001; Scheiner and Gurevitch 2001). The post hoc mean comparison
tests supported by the application are Fisher’s LSD, Tukey’s honest
significant difference (HSD), Bonferroni and Šidák correction for
multiple comparisons, and the Scheffé test. To help users navigate
the tool, the Shiny application is organized into three main mod-
ules: Documentation, File upload, and Estimator (see details be-
low). A user-generated CSV input file containing trial-specific
information is required to use the application. Below, we briefly
describe how to assemble the input CSV file. Detailed guidelines
for users are provided in the GitHub tutorial at https://github.com/
vcgarnica/MSE_FindR.
Documentation. This module contains a walk-through tutorial

and downloadable example files that are available at https://github.
com/vcgarnica/MSE_FindR. Users compile reports with the same
experimental configuration, i.e., experimental design, post hoc test,
significance level, and experimental structure (for two-way designs),
in a designated folder (Fig. 1). For each folder, the user will generate
a CSV input file comprising the trial information organized into
columns: (i) trial identification number, (ii) factor level, (iii) factor
level means, (iv) number of replicates or blocks (if applicable based
on the experimental design), and (v) corresponding post hoc test
letter results (Fig. 1). By specifying a trial-specific identification
number column in the CSV input file, many trials with the same
configuration can be processed simultaneously.
MSE FINDR handles various one- and two-way experimental

designs. In one-way designs, a single column is used to designate the
factor (herein referred to as factor A) for which bs2 is to be recovered.
In two-way designs, there are two separate columns in the input CSV
file to account for the two factors (A and B) that are present in the
designs. This structure must be maintained regardless of whether the
factors are listed completely (means and post hoc test results avail-
able for both factors, A and B) or partially (means and post hoc test
results are available for either main effect A or B but not both) in the
studies. While this seems counterintuitive, the latter scenario is
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common when the ANOVA interaction effect is not statistically
significant, and authors opt to include means and post hoc tables for
factors A and B (main effects) individually. In this case, users must
still create an additional column denoting the number of levels for the
omitted factor, in addition to the present main effect column, for
which bs2 will be recovered. This step is crucial for the tool to ac-
curately calculate the appropriate degrees of freedom for the ex-
traction of bs2. Incorrect bs2 values can arise if incomplete or incorrect
trial information is included in the CSV input file. Familiarity with
the example files and tutorial guidelines is necessary to properly
collate trial information in the CSV input file before using the
application.
File upload. In this module, users upload a CSV input file that

contains trial-specific information organized as per the tutorial’s
guidelines as briefly described above. The application supports
standard CSV formats. The default format uses commas as separa-
tors. Default settings can also be overridden to align with the format
of your CSV data file.
Estimator. Once the CSV input file has been uploaded, this

module details the estimation and extraction of bs2. Users specify the
underlying trial configuration (experimental design, post hoc test,
and significance level) applied to all trials in the designated folder
and the CSV input file using the design box (Fig. 1). The selection
fields in the column assignment box are dynamically updated
as the experimental designs are changed in the design box after
the user clicks on the “estimate” button. Users must match col-
umns in the CSV input file to the respective selection fields in the
column assignment box. This is a critical step in the proper re-
covery of bs2. A drop-in download button appears after recoveringbs2, which enables the results to be exported as a CSV file. MSE
FINDR output includes all previously added trial-specific in-
formation along with the recovered bs2 and its respective degrees
of freedom.
The MSE FINDR algorithms compute the largest non-significant

and the smallest significant difference for all mean pairwise
comparisons within the specified post hoc test. The mean of these
two values is defined as the ELSD, as described previously by
Ngugi et al. (2011). However, unlike Ngugi et al. (2011), esti-
mates of bs2 are subsequently calculated by using ELSD as the

plug-in for the LSD in the specific post hoc test (Milliken and
Johnson 2009).
For Fisher’s LSD, bs2 is given as:

bs2 = 0:5  ·  n  · 

�
ELSD

qtð1 −a=2; df Þ
�2

(1)

where, n is number of replications or blocks per trial, qt is the quantile
value from a Student t-distribution based on the significance level of
the posthost test (a) and the error degrees of freedom (df).
For Tukey’s HSD, the estimate is calculated as:

bs2 = n  · 

�
ELSD

qtukeyð1−a=2; nlevels; df Þ
�2

(2)

where qtukey is the quantile value from the q (or studentized range)
distribution based on the significance level of the post hoc test (a),
the number of levels of a factor (nlevels), the error degrees of freedom
(df), and all other variables are as described above.
For the Bonferroni correction, the estimate was calculated as:

bs2 = 0:5  ·  n  · 

�
ELSD

qtð1 −a=2m; df Þ
�2

(3)

in which m is the total number of pairwise comparisons per trial, and
all other variables are as described above.
For the Šidák correction, the estimate is calculated as:

bs2 = 0:5  ·  n  · 

�
ELSD

qtð1 − ð1 −aÞ1=m; df Þ

�2

(4)

where all variables are as defined above.
For Scheffé’s test, the estimate is computed as:

bs2 =
n  ·  ELSD2

2ðnlevels − 1Þ  ·  qf ð1−a; nlevels− 1; df Þ (5)

in which qf is the quantile value from the F-distribution, and
all other variables are as defined above. Equations 1, 2, 3, 4, and 5
are for the calculation of bs2 from ELSD based on one-way de-
signs. Appropriate adjustments to these equations for two-way

Table 1. Experimental designs and treatment structures used in a simulation study to assess the accuracy of mean square error estimates generated by the MSE
FINDR application

Design
Description and treatment

structurev
Number of
factors

Factors and
treatment levelsw

Factor
omittedx

Source of
variationy

Post hoc mean comparison
information reported in studyz

1 Latin square 1 A (4–8) – A Between a single effect
2 Complete randomized design

(CRD)
1 A (4–20) – A Between a single effect

3 Randomized complete block design
(RCBD)

1 A (4–20) – A Between a single effect

4a Two-way factorial CRD 2 A (4–7), B (4–7) – A × B Between interaction effect
4b Two-way factorial CRD 2 A (4–7), B (4–7) B A Between one main effect
5a Two-way factorial RCBD 2 A (4–7), B (4–7) – A × B Between interaction effect
5b Two-way factorial RCBD 2 A (4–7), B (4–7) B A Between one main effect
6a Split-plot CRD 2 A (4–7), B (4–7) A B Between one sub-plot effect
6b Split-plot CRD 2 A (4–7), B (4–7) B A Between one main-plot effect
6c Split-plot CRD 2 A (4–7), B (4–7) – B within A Between interaction effect of sub-plot

within main-plot
7a Split-plot RCBD 2 A (4–7), B (4–7) A B Between one sub-plot effect
7b Split-plot RCBD 2 A (4–7), B (4–7) B A Between one main-plot effect
7c Split-plot RCBD 2 A (4–7), B (4–7) – B within A Between interaction effect of sub-plot

within main-plot

v Experimental design and treatment structure are based on linear models as described in the simulation study.
w Values in parentheses are the number of levels for each factor in the experimental design considered in the simulation.
x Refers to cases where summary statistics (mean, variance, and post hoc test results) for one factor are missing (i.e., omitted factor) and not available in a report,
and the goal is to recover the bs2 for the second factor in a two-way design.

y Source of variation refers to the factor for which treatment means and post hoc test results are available in the report and for which bs2 is to be recovered.
z In two-way factorial designs, A and B are interchangeable. For the split-plot design, factor A is the main-plot, while factor B is the sub-plot. Factors A and B are
not interchangeable for the split-plot design due to its hierarchical structure.
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designs in the calculation of bs2 are provided in the R code in the
application.

Software testing using simulated data
Simulated trials. To assess the performance of the MSE FINDR

algorithms in recovering bs2, randomized controlled trial datasets
were simulated for each experimental design and treatment structure
available in the application (Table 1). The simulation study was
designed to generate data where the number of treatments, treatment
effect sizes, and the number of replicates varied randomly for each
simulated trial, mimicking a diverse range of experimental settings.
For each simulated experimental design, 10,000 individual trial
datasets were generated with treatment levels ranging from 4 to 20,
depending on the design and treatment structure, and with three to
five replications (Table 1).
Linear models. The response variable y (a continuous outcome)

was assumed to be independent and normally distributed. We
adopt the notation in Oehlert (2000) to describe the linear models
used in our simulations. One-way experiments arranged in a

completely randomized design (CRD) were simulated using the
linear model:

yij =m+Ai + eij (6)

wherem is the overall mean, Ai is the effect of the ith level of factor A,
j is the replication within the level of A, and eij is the random error
(Gaussian-distributed with a mean of zero and variance s2). The
linear model for one-way experiments arranged in a randomized
complete block design (RCBD) was:

yik =m+Ai + dk + eik (7)

where dk represents the kth block effect, eik is the error term, and Ai is
as described above.
Data for the two-way factorial design with treatments arranged in a

CRD were simulated using the model:

yijk =m+Ai +Bj + ðABÞij + eijk (8)

where Bj is the effect due to the jth level of factor B, (AB)ij is the effect
of the interaction between the ith level of A and the jth level of B, and
eijk is the error term.

Fig. 1. Conceptual flow chart to illustrate the use of MSE FINDR highlighting the important steps of information input and the recovery of bs2 based on a CSV file containing multiple
trials arranged in a randomized complete block design and means separated using Fisher’s least significant difference (LSD) test with a set to 0.05.

1940 Plant Disease /Vol. 108 No. 7



The two-way factorial design with treatments arranged in a RCBD
was specified as:

yijk =m+ dk +Ai +Bj + ðABÞij + eijk (9)

where dk is the block effect and eijk is the residual error term. All the
other terms are as described for equation 8.
The model for a split-plot design with the whole-plot factor (A)

arranged in a CRD was:

yijk =m+Ai +wkðiÞ +Bj + ðABÞij + ekðijÞ (10)

where wk(i) is the whole-plot error component and ek(ij) is the split-
plot level error. The subscript notation k(i) conveys that the whole-
plot error is nested within treatment i.
The linear model for a split-plot design with the whole-plot factor

(A) arranged as a RCBD was:

yijkl =m+ dk +Ai +wlðikÞ +Bj + ðABÞij + elðijkÞ (11)

where dk is the blocking effect, el(ijk) is the split-plot error, and all
other terms are as described for equation 10.
For experiments with a basic Latin square design, y was generated

using:

yimn =m+Ai +Rm +Cn + eimn (12)

where m and Ai are as described above, Rm is the effect of themth row,
Cn is the effect of the nth column, and eimn is the random error term.
Treatment effect size and error specification. Factor effects

were fixed within a trial but allowed to vary across trials. The overall
mean m was simulated from a Gamma (k, u) distribution with shape
parameter k = 60.2 and scale parameter u = 1, ensuring that m was
strictly positive. The effects of treatments, their interactions, block
(dk), row (Rm), and column (Cn) were simulated from a Gaussian
(Normal) distribution: Ai and Bj ~ N(3, 2); ABij ~ N(1, 1.5); and dk,
Rm, andCn ~N(1, 0.2). The error terms in equations 6, 7, and 12 were
simulated from a N(0, 5) distribution, the error terms in equations 8
and 9 from a N(0, 7) distribution, and the error terms in equations 10
and 11 from a N(0, 6) distribution. The effects wk(i) and wl(ik) were
simulated from a N(0, 3) distribution.

Data analysis
From the 10,000 datasets simulated for each experimental design,

we randomly sampled 1,000 trials that yielded statistically significant
(P # 0.05) ANOVA results for the factors of interest (A, B, or both)
and extracted their respective bs2 values (i.e., actual bs2). For each of

these trials, treatment means were estimated via least squares, and
post hoc mean comparisons were performed at a = 0.05 using the R
packages “emmeans” version 1.9.0 (Lenth et al. 2023), “agricolae”
version 1.3-7 (de Mendiburu 2023), and “multcomp” version 1.4-25
(Hothorn et al. 2023). The post hoc mean separation tests evaluated
were Fisher’s LSD, Tukey HSD, the Šidák and Bonferroni correc-
tions, and the Scheffé test.
Information on trial design and treatment means and associated post

hoc test results were then submitted to the MSE FINDR application
to recover bs2 (i.e., MSE FINDR bs2). Incomplete data reporting is of
particular concern (Gurevitch and Hedges 1999), so we also examined
scenarios where summary statistics and post hoc test results are reported
for one factor only in two-way factorial and split-plot designs (no re-
ported results having been presented on the second factor). The goal in
these cases is to recover bs2 for the factor that was reported (Table 1).
Lin’s concordance analysis (Lin 1989), implemented using the R

package ‘DescTools’ version 0.99.50 (Signorell 2023), was used to
assess the agreement between MSE FINDR bs2 and the actual bs2.
Lin’s concordance correlation coefficient (rc) measures the variation
of data from the line of concordance (a slope of one and zero in-
tercept). The concordance coefficient is the product of Pearson’s
correlation coefficient (r), which is a measure of the precision (or
variability) with which the MSE FINDR bs2 values estimate the actualbs2, and a coefficient of bias (Cb), which is a measure of the closeness
of the best-fitting line to the concordance line. Values of rc range
from −1 to +1, with rc values near +1 indicating strong concordance,
while those near −1 indicating a strong discordance. Values of Cb

range from 0 to +1, with Cb near +1 indicating a closeness of the best-
fitting line to the concordance line (i.e., low bias).

Results

Concordance of bs2 estimates
The extent of agreement (rc) between bs2 recovered by MSE

FINDR and the actual bs2 depended on the experimental design,
treatment structure, and the post hoc test used to compare treatment
means.
For one-way designs (Latin square, CRD, and RCBD), values of

rc were high (>0.89) across the post hoc mean separation tests with
values of 0.92, 0.92, and 0.94 for Designs 1, 2, and 3, respectively
(Table 2). Similarly, values of rc were high (>0.82) for two-way
designs when summary statistics were present for both factors A
and B (Designs 4a, 5a, 6c, and 7c) (Table 2). In this case, the mean of

Table 2. Lin’s concordance correlation coefficient (rc) and correlation coefficient (r) for the agreement between actual bs2 obtained from analysis of variance of
simulated trials and bs2 recovered by MSE FINDR

Concordance correlation coefficient (rc) Correlation coefficient (r) Meanw

Designx Fisher’s LSDy Tukey HSDy Šidák Bonferroni Scheffé Fisher’s LSDy Tukey HSDy Šidák Bonferroni Scheffé rc r

1 0.89 0.92 0.93 0.93 0.92 0.89 0.92 0.92 0.92 0.92 0.92 0.91
2 0.93 0.93 0.92 0.92 0.90 0.93 0.93 0.92 0.92 0.90 0.92 0.92
3 0.93 0.94 0.94 0.94 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94
4a 0.99 0.97 0.96 0.96 0.82 0.99 0.97 0.96 0.96 0.84 0.94 0.94
4b 0.41 0.53 0.55 0.55 0.57 0.50 0.58 0.59 0.60 0.64 0.52 0.58
5a 0.99 0.97 0.96 0.96 0.91 0.99 0.97 0.96 0.96 0.92 0.96 0.96
5b 0.45 0.54 0.54 0.54 0.52 0.46 0.62 0.59 0.59 0.59 0.52 0.57
6a 0.39 0.59 0.56 0.56 0.56 0.53 0.66 0.67 0.67 0.65 0.53 0.64
6b 0.87 0.89 0.90 0.90 0.88 0.88 0.90 0.89 0.90 0.91 0.89 0.90
6c 0.95 0.89 0.88 0.87 0.83 0.95 0.90 0.90 0.90 0.87 0.88 0.90
7a 0.44 0.52 0.52 0.52 0.52 0.54 0.58 0.57 0.58 0.56 0.50 0.57
7b 0.81 0.89 0.89 0.88 0.89 0.82 0.90 0.89 0.89 0.89 0.87 0.88
7c 0.93 0.89 0.88 0.88 0.84 0.94 0.90 0.89 0.89 0.86 0.88 0.90
Meanz 0.76 0.81 0.80 0.80 0.78 0.79 0.83 0.82 0.82 0.80 0.79 0.82

w Values are means of rc and r summarized by experimental design across post hoc mean separation tests.
x Design description is as in Table 1.
y LSD is the least significant difference, while HSD is the honest significant difference.
z Means of rc and r summarized by post hoc mean separation test across experimental designs.
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rc across post hoc mean separation tests for the two-way factorial
CRD (Design 4a) and RCBD (Design 5a) were 0.94 and 0.96, re-
spectively, while the mean of rc for the two-way split-plot CRD
(Design 6c) and RCBD (Design 7c) was 0.88. Across all one- and

two-way designs (when both factors are present), rc were high and
relatively similar for all post hoc mean separation tests (values
0.92 to 0.94) except for the Scheffé test, where rc was 0.88
(Table 2).

Fig. 2. Relationship between MSE FINDR recovered bs2 and actual bs2 in simulated data from one-way experimental designs: Latin square, completely randomized design (CRD),
and randomized completed block design (RCBD). Actual bs2 values were obtained from an analysis of variance (ANOVA) of simulated data, while MSE FINDR bs2 values were
extracted using treatment means, post hoc test results stemming from the ANOVA, and other basic trial information. The open circles are the bs2 estimates, the dashed line
represents the concordance line, indicating perfect alignment between actual and estimated bs2, and the blue line represents the best-fitting linear regression line to the data.
The bias correlation factor, Cb, is a measure of the closeness of the best fitting line to the concordance line.

Fig. 3. Relationship between MSE FINDR bs2 and actual bs2 for simulated data from two-way experimental designs: completely randomized design (CRD) and randomized
completed block design (RCBD). For both CRD and RCBD designs, two variations of the treatment structure are considered: (i) two factors, A and B, and their interaction
(A × B) are assessed and (ii) one factor (herein, B, and hence the interaction) is omitted, and the goal is to recover bs2. Actual bs2 values were obtained from an analysis of
variance (ANOVA) of simulated data, while MSE FINDR bs2 values were generated using the treatment means, post hoc test results stemming from the ANOVA, and other
basic trial information. The open circles are the bs2 estimates, the dashed line represents the concordance line, indicating perfect alignment between actual and estimated bs2,
and the blue line represents the best-fitting linear regression line to the data. The bias correlation factor, Cb, is a measure of the closeness of the best fitting line to the
concordance line.
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The impact of the absence of summary statistics on rc for one
factor in the two-way designs was dependent on the experimental
structure. For the two-way factorial designs of CRD and RCBD,
absence of summary statistics of one factor resulted in a 30 to 59%
decrease in rc, with a reduction of 45% across post hoc tests. For
the two-way split-plot designs of CRD and RCBD, the impact of
the absence of summary statistics on rc depended on whether the
missing statistics were of the main- or sub-plot factor. The mean
value of rc across post hoc tests was reduced by 40 to 43% when
data of the main-plot factor were missing, while there was no
reduction in rc when data for the sub-plot factor were missing.
Values of rc for the latter were similar to those where summary
statistics of both factors were present. Across the two-way designs
where summary statistics of one factor (factorial design) or the
main-plot factor (in split-plot design) were missing, rc was rela-
tively lower for Fisher’s LSD (rc = 0.42) than for the more con-
servative post hoc mean separation tests (rc = 0.54). Similarly, rc
was relatively lower across experimental designs and treatment
structures for Fisher’s LSD (rc = 0.76) than for more conservative

post hoc mean separation tests examined (rc = 0.78 to 0.81)
(Table 2).

Bias and precision of bs2 estimates
Bias was generally low (Cb values ranging from 0.97 to 1.0; Figs.

2, 3, and 4) across all post hoc mean separation tests and design
structures. The main exception was for the Fisher’s LSD test and for
design structures where summary statistics (especially the main-plot
factor in the split-plot design) were missing, for which bias was rela-
tively high, with Cb values ranging from 0.77 to 0.85 (Figs. 3 and 4).
In contrast to bias, the precision (r) ofMSE FINDR estimates of bs2

was strongly influenced by the absence of reported summary statis-
tics (i.e., means and post hoc test results). For example, estimates ofbs2 were precise (r ranging from 0.90 to 0.96; Table 1) with one-way
designs when summary statistics were available, regardless of the
post hoc mean separation test, and similarly for the two-way factorial
design when summary statistics for both factors were present
(r ranging from 0.92 to 0.99), except when Scheffé’s test was used

Fig. 4. Relationship between MSE FINDR bs2 and actual bs2 for simulated data from split-plot designs with treatments arranged in a completely randomized design (CRD) and
randomized completed block design (RCBD). For both CRD and RCBD designs, three variations of treatment structures are considered: (i) one factor (A) is omitted, B is present,
and the goal is to recover bs2 of B; (ii) one factor (B) is omitted, A is present, and the goal is to recover the bs2 of A; and (iii) both factors are present (i.e., B within A), wherein factor A
is the main-plot, B is the sub-plot, and the goal is to recover bs2 for A. Actual bs2 values were obtained based on an analysis of variance (ANOVA) of simulated data, while MSE
FINDR bs2 values were generated using treatment means, post hoc test results stemming from the ANOVA, and other basic trial information. The open circles are the bs2 estimates,
the dashed line represents the concordance line, indicating perfect alignment between actual and estimated bs2, and the blue line represents the best-fitting linear regression line to
the data. The bias correlation factor, Cb, is a measure of the closeness of the best fitting line to the concordance line.
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(r = 0.84; Design 4a) (Table 1). However, missing summary statistics
for one factor (e.g., B) in the two-way factorial design resulted in a
much lower precision of bs2 estimates for the other factor (A), with r
values ranging from 0.54 to 0.64 across post hoc tests. Likewise, the
precision of bs2 estimates for the split-plot design was high when
summary statistics were available for both factors (r values from
0.88 to 0.95) but considerably lower when summary statistics for
either the sub-plot factor (0.53 $ r $ 0.91) or the main-plot factor
(0.53 $ r $ 0.67) were missing (Table 1).

Discussion

Meta-analysis combines information frommultiple studies to draw
generalized inferences from a body of research. However, in-
complete reporting of variances in the primary reports can lead to
biased estimates of the effect size if such reports are excluded be-
cause of the missing variances data (Weir et al. 2018). Thus, there has
been an interest in developing techniques that still allow meta-
analysis to include studies where the basic summary statistics are
lacking. In this study, we present and test MSE FINDR, a user-
friendly web-based interface that enables the recovery of bs2 from
reports that have not included the within-study variance but do
contain the treatment means, post hoc test results, and a description of
the experimental protocol (statistical design and number of replica-
tions). The ability of MSE FINDR to recover bs2 was analyzed using
simulated data representing a variety of experimental designs and
treatment structures commonly found across a range of scientific
fields (Montgomery 2001; Scheiner and Gurevitch 2001). Actual
values of bs2 from simulated trials were compared with estimates ofbs2 recovered by MSE FINDR given an experiment’s summarized
results (treatment means and post hoc test results but no measure of
variance). Our results indicated that MSE FINDR is accurate in es-
timating bs2, but the accuracy does depend on the experimental de-
sign and treatment structure of the trial.
Simulations suggested that MSE FINDR performs well with both

one-way (Latin square, CRD, and RCBD) and two-way (factorial and
split-plot) designs when means and post hoc test results are available
for all factors involved, irrespective of the post hoc test used. The
accuracy of MSE FINDR is reduced for two-way split-plot designs
when the whole-plot factor summaries are missing (no means or post
hoc test results given) with the goal of recovering bs2 for the sub-plot
factor. Our simulations also indicate that for two-way factorial de-
signs, the absence of information on one factor reduces the accuracy
of MSE FINDR in recovering bs2 for the second factor. In the latter
case, users should evaluate whether to use the recovered bs2 in their
quantitative synthesis and how this could impact the interpretation of
the results of their meta-analysis.
Recently, Acutis et al. (2022) developed EX-TRACT, a Microsoft

Excel-based tool that recovers bs2 for a variety of experimental de-
signs and post hoc methods, some of which overlap with those
implemented inMSE FINDR. TheMSE FINDR application includes
three aspects that are not covered by EX-TRACT. Firstly, MSE
FINDR implements the recovery of bs2 for the one-way Latin square
design, which is not included in EX-TRACT. Secondly, MSE
FINDR recovers bs2 for studies where Bonferroni and Šidák cor-
rections and the Scheffé test are the post hoc tests, and these multiple
comparison tests are not implemented in EX-TRACT. Thirdly, MSE
FINDR distinguishes between two-way split-plot designs in which
the main plot is in a CRD or in an RCBD, whereas EX-TRACT
handles main plots arranged in an RCBD only. Several trials with
the same configurations can also be processed simultaneously by
MSE FINDR compared with EX-TRACT. The implementation of
MSE FINDR and its Shiny-based web interface within the R envi-
ronment permits new algorithms to be easily integrated into the ap-
plication. By providing this Shiny application in R, a smoother
integration in the programming environments is enabled within which
researchers can manipulate datasets and perform other analyses while
taking advantage of the rich universe of existing R packages and

graphics capabilities (Title et al. 2022). EX-TRACT was validated by
comparing its output to a known standard deviation value generated
from simulated experiments (Acutis et al. 2022). The accuracy of
MSE FINDR was determined using Lin’s concordance analysis
(Lin 1989) over repeatedly simulated data. We compared the per-
formance of MSE FINDRwith that of EX-TRACT using a subset of
our simulated data. Estimates of MSE FINDR bs2 were very similar
to the mean values of bs2 extracted using EX-TRACT for compa-
rable experimental designs and posthost test results (Supplementary
Tables S1 to S3).
In summary, MSE FINDR is an additional tool that users can use

to estimate bs2 from reports that lack information on within-study
variance but provide means, post hoc test results, and other basic
experimental design information. This should allow users to easily
estimate bs2 from a variety of studies with pertinent information to
calculate the required effect size for inclusion in meta-analyses of
estimates of effect size and variances based on a continuous response
in an ANOVA setting. Complementary tools that compute a range
of effect sizes (Lipsey and Wilson 2001) have been implemented
in a web-based Practical Meta-Analysis Effect Size Calculator
(https://www.campbellcollaboration.org/research-resources/effect-
size-calculator.html). These web-based meta-analytical tools, in
combination with MSE FINDR should expand the array of studies
and reports for inclusion in quantitative research synthesis that would
have otherwise been omitted due to the lack of information on within-
study variability or related metrics. In its current version, MSE
FINDR is not designed to recover bs2 of the main-plot factor in split-
plot designs if only summary statistics of the sub-plot factor have
been reported. Thus, subsequent improvements are needed when the
interaction is significant and when one is interested in recovering bs2

for both factors. Additional experimental designs (e.g., split-split-plot
and three-way factorial designs) should be implemented in future
versions of MSE FINDR, and the tool should also expand on the es-
timation method to return not only bs2 but the upper and lower bounds
of the estimate too. This study highlights the need for published reports
to provide, at a minimum, some basic summary statistics (means and
variance) where raw datasets are not available to readers to facilitate
quantitative syntheses of results for broad generalization across a body
of research.
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